

Active Roof System

College of Engineering, Forestry & Natural Sciences Department of Mechanical Engineering; Senior Capstone

Final Project Presentation

Mohammed Alkhaldi, Coy Cody, Donovan Hard, Marissa Munson and Krysten Whearley

April 25th, 2014

Overview

- Project Description
- Three Roof System Prototypes
- Model Building Design & Construction
- Internal Building Systems
- Simulated Sun
- Testing Procedures & Results
- Conclusions

Introduction to Project

- Large warehouse buildings use a significant amount of power keep the interior cool during the summer.
 - Heat is transferred into these buildings through the roof
 - The larger the surface area the more sun radiation which hits it

Need Statement & Project Goal

- Need Statement
 - The amount of power used to keep the interior of large buildings at a comfortable, cool temperature is too high.
- Project Goal
 - To design and build roof system prototypes that can maintain the interior at constant temperature of a building model while using minimal power.

Objectives and Constraints

- Constriants
 - Create a scale model of a large warehouse
 - Interior of building must be maintained at 70°F
- Objectives

Objective	Measurement Basis	Units
Maintain Internal Temperature of 70°F	Interior Temperature of Scale Model	۴F
Low Power Usage	Amount of Time A/C System is Used Throughout the Day	Seconds

Project Description

- Project will investigate roof designs that will lower this power consumption
 - Control Roof ~ Plain White Roof
 - Passive Roof ~ Stationary Panels
 - Active Roof ~ Solar Tracking Panels

Passive Roof Prototype Constructed

Active Roof Prototype Constructed

Active Roof Prototype Constructed Cont.

Model Building Design & Construction

- Model building is scaled after a 30,000ft² warehouse
 - Scaling factor dependent on the insulation material for model building
 - Selected 3/32in thick cork
 - Scaling Factor is 1/40

Model Building Design & Construction

 \circ Walls are made of

555555	Poster Paper		
555555555555	Cork (Insulation)		
555555555	Poster Paper		

Model Building Design & Construction Cont.

• Beginning framework and walls

Model Building Design & Construction Cont.

• Added support frames

Temperature Monitoring

- UNO Arduino
- 4 Thermistors
- Arduino programmed to
 - Read temperatures
 - Send signals to the A/C system
 - Record the time when the A/C is running

Temperature Monitoring Cont.

• Placement of thermistors inside model building

A/C System

- Activated when internal temperature reaches 75°F
 - Then, turn off when returns to 70°F (avg room temp)
- Serpentine layout with 1/2in Copper piping
- Centralized location for even cooling

A/C System Cont.

- ~32°F (ice) water pumped through the piping
 - Ice water is contained in cooler
- Radiant cooling with fans
- Connected to arduino to control on/off

Simulated Sun

• Why its needed?

The ability to test indoors

Donovan

Simulated Sun Cont.

Lighting System

- 25 100W Incandescent light bulbs
- Wired into 4 strands

Simulated Sun Cont.

Power Source

- Briggs & Strattion portable generator
 - 5500 Watts
- Ran outside and used extension cords
 - Breaker Boxes placed between cords

Simulated Sun Cont.

Frame

- To suspend lights above building model
- Mylar added around to prevent radiation loss

Testing Procedure

- Testing each prototype twice
 - Each test is 1 hour long
 - Using simulated sun in a controlled enviroment
- During testing simulate sun is moved
 - Every 6:40min, equal spaces (Total of 9 moves)
 - Move 5 represents 12pm-2pm
 - Active roof panels are rotated to a new angular position as well

Testing Procedure Cont.

• Movement of simulated sun

Testing Procedure Cont.

Testing Results

Temperature vs. Time for Control and Active Roofs

Krysten

Testing Results

Temperature vs. Time for Control and Passive Roofs

Krysten

Testing Results

• The results of the passive and active roof prototypes are compared to the control roof.

Prototype Roof	% Reduction in Power Usage
Passive	43%
Active	72%

 The power usage of the active roof prototype also includes the hypothetical power usage of a motor if it were used to autonomously rotate the panels.

Conclusions

- The active roof prototype had the lowest power usage (even with added power of "motor")
 - The passive roof did significantly reduce the power usage as well
- The active roof was more efficient at reflecting away radiation during the testing positions representing 12pm-2pm.
- The active roof panels also require less materials than the passive roof

Conclusions Cont.

- However, in reality, the cost of construction of the active system may be higher than the passive
 - So in the short run it may be more cost effective to install the passive roof.

References

- Wilson, "Expanded Cork The Greenest Insulation Material?," BuildingGreen.com, 2013. [Online]. Available: http://www2.buildinggreen.com/blogs/expanded-cork-greenest-insulationmaterial. [Accessed 26 10 2013].
- "30-49-109 Insulation Guide.pdf," 08 2009. [Online]. Available: http://www.certainteed.com/resources/30-49-109%20Insulation%20Guide.pdf. [Accessed 26 10 2013].
- D.Shroeder, "The sun and the Seasons," weber.edu, 2011, [Online]. Available: http://physics.weber.edu/schroeder/ua/SunAndSeasons.html [Accessed 25 10 2013]
- Gronbeck, "SunAngle," Sustainable by Design, 2009. [Online]. Available: http://www.susdesign.com/sunangle/. [Accessed 27 10 2013].

References Cont.

- F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, Jefferson City: John Wiley & Sons, Inc., 2011.
- "M. J. Moran, S. N. Howard, B. D. Daisie and M. B. Bailey, Fundamentals of Engineering Thermodynamics, Wiley & Sons, Inc, 2011.

Acknowledgements

Our team would like to thank the following professors for providing guidance during this project:

- Dr. Michael Shafer (Client)
- Dr. Srinivas Kosaraju
- Dr. John Tester
- Perry Wood, PE